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ABSTRACT :  We use Lagrange multiplier method to give an alternative proof of the inequality involving
moments of a discrete random variable. We also discuss an alternative proof of the inequality between arithmetic
mean and variance of discrete uniform distributions.
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I. INTRODUCTION

Let {p1, p2, ..., pn} be the probability distribution with
support {x1, x2, ..., xn). The rth order moment 'r is defined
as
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The inequalities between the moments of the discrete
probability distributions have been studied extensively in
literature. It is shown that the Lagrange and Kuhn Tucker
methods are useful in investigating such inequalities, see
[1-2]. The variance upper bounds are important in the field
of theory of mathematical statistics. A number of important
inequalities exist in literature, for more details see [3-10].

In the present paper, we first derive an inequality
involving moments of discrete probability distributions
(theorem 2.1, below). We show a connection between an
inequality due to Muilwijk [10] and Mohr's circle diagram
in the theory of elasticity, (Lemma 2.2, below). It follows
from Mohr's circle diagram that the Muilwijk inequality is
true for n = 3, we then show on using the similar analysis
that the inequality must be true for ni (Theorem 2.3, below)
also see [11].

II. MAIN RESULTS

Theorem 2.1. Under the above notations:
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If xi > 0, i = 1, 2, ..., n, then
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Proof : We minimize the function
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Subject to the constraints
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The Lagrange function is
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The derivatives are
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The solutions of these equations
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give xi = k2                              ... (2.11)

as 0
i
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x


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
implies that all xi are equal, i = 1, 2, ..., n.

Also

k1 = k2
2                             ... (2.12)

For xi > 0, i = 1, 2, ..., n, the Hessian matrix
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is positive definite, therefore the function is convex.
So xi = k2 gives the minimum of f(x). Hence
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Since k1 = k2
2, therefore from (2.14), we have
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Also 
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 respectively gives k1

='1'2. The inequality (2.1) now follows from (2.15).

From (2.11) and (2.12), we get
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Therefore we have
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The inequality (2.2) follows from (2.17).

Lemma 2.2.  Let a < xi < b, i  = 1, 2, 3, �, n.   For
n = 3, we have

'2 < (a + b)'1 � ab               ... (2.18)

and '2 > (xj�1 + xj)'1 � xj�1xj           ... (2.19)

j = 2, 3. The inequalities (2.18) and (2.19) become
equalities when n = 2.

Proof : We have

p1 + p2 + p3 � 1                    ... (2.20)
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and 2 2 2
1 1 2 2 3 3 2x p x p x p u            ... (2.22)

The solution of the simultaneous system of linear
equations is
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For x1 < x2 < x3, we have (x2 � x1)(x3 � x1) > 0, also
p1 > 0 therefore it follows from (2.23) that
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Similarly, on using similar arguments, it follows from
(2.25) that

2 1 2 1 1 2( )x x x x                 ... (2.27)

Likewise, the inequality (2.18) follows from (2.24).
Further, it follows from direct calculations that for n = 2,
we have u'2 = (x1 + x2)u'1 � x1x2.

Theorem 2.2.  For  real numbers x1, x2, ..., xn, we have
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and 2 1 1 1( )j j j jx x x x              ... (2.29)

j = 2, 3, ..., n.

Proof : By Lemma 2.2, the theorem is true for n = 3.
For n > 4, we write
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The solution of the system of the linear equations
(2.30), (2.31) and (2.32) can be written as

2 1 , ,
( ) ( )( )

( )( )

n
i i ii

x x x x p x x x x
p

x x x x

       


   

       


 


... (2.33)

2 1 , ,
( ) ( )( )

( )( )

n
i i ii

u x x u x x p x x x x
p

x x x x

       


   

       


 


... (2.34)

and

2 1 , ,
( ) ( )( )

( )( )

n
i i ii

u x x u x x p x x x x
p

x x x x

       


   

       


 


... (2.35)

where ,  and  take values 1, 2, ..., n with .    
Let  = 1 and  = n. From (2.34) we have
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For x1 < x < xn we have (x � x1)(x � xn) < 0. Also
p > 0, therefore it follows from (2.36) that
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Since (xi � x1)(xi � xn) < 0, for i = 1, 2, ..., n therefore
the inequality (2.28) follows from (2.37).

We now consider the case when ,  and  take
consecutive values. So x < x < x and (x � x)(x � x) >
0. Since p > 0, therefore from (2.35)
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The inequality (2.29) therefore follows from (2.38), as
(xi � x)(xi � x) > 0 for 1, 2, ..., n � 1.

Remark : If S2 be the variance of real numbers
x1, x2, ..., xn, then '2 = S2 + 1'

2. The Muilwijk inequality,
namely, S2 < (b � '1)(u'1 � a), follows from the inequality
(2.28).
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